Active motor damping strategy for driveline vibrations of a hybrid electric vehicle during ABS operation

Author:

Bayar Kerem1ORCID

Affiliation:

1. Orta Dogu Teknik Universitesi, Ankara, Turkey

Abstract

Torsional drivetrain vibrations in hybrid and electric drivetrains, which occur during traction and braking control, are commonly encountered. This problem occurs mainly due to the weak damping characteristic of the hybrid/electric drivetrain and the fast time response characteristics of the electric motor. An active motor damping (AMD) control algorithm for a hybrid electric vehicle, considering ABS braking maneuvers on different road conditions, is developed in this work. The control problem is structured such that the control objective is disturbance rejection against the estimated brake torque signal received from the ABS module. Communication delay between the ABS and motor control module is handled within the control strategy. State feedback control strategy is used with the linearized version of the non-linear state-space equations together with an Extended Kalman filter. Gear backlash is taken into account without the need to estimate the mode of backlash. In the development of the controller, state feedback gains are set such that the ABS functionality on tire slip regulation is not altered. Existing studies in the literature feedback only the angle of twist and axle wrap angular speed for damping the vibrations. The structure of the controller in this study is different in that it estimates and feeds back tire slip, in addition to these two. Simulation results show the effectiveness of the controller in reducing the angle of twist without deteriorating ABS tire slip control and braking performance of the vehicle.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3