Spark ignition timing effects on a converted diesel engine using natural gas: A numerical study

Author:

Aktas Fatih1ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Gazi University, Ankara, Turkey

Abstract

Since it is not expected to switch to fully electric and/or fuel cell vehicles in the near future, the search for alternative fuels for systems using internal combustion engines has accelerated. At the forefront of these studies is the use of natural gas instead of diesel fuel in on-road, off-road vehicles, or stationary power generation plants. Diesel engines with their special combustion chamber (i.e. bowl in-piston) can be converted to run entirely on natural gas by installing a natural gas fuel injector on the intake manifold and a spark plug instead of a diesel fuel injector. In this study, in-cylinder combustion characteristics, performance, and emission values for different Spark Ignition Time (SIT) of natural gas usage at 2300 rpm and full load in a tractor engine with a compression ratio of 17.5:1 were investigated numerically using ANSYS Forte three-dimensional analysis program. G-equation combustion model, RANS k-ε turbulence model, and methane chemical kinetic mechanism representing natural gas consisting of 29 species and 171 equations (a reduced mechanism) were used. First SIT was accepted as a 719.5 Crank Angle Degree (CAD) which is diesel injection start time. As a result, due to the special shape of the combustion chamber of diesel engines (re-entrant bowl in-piston), it was seen that the flame was faster and thicker in the bowl, while it was slower and thinner in the squish zone. With the advanced of SIT, the in-cylinder pressure ratio increased. By taking SIT too advanced (i.e. 690, 695, and 700 CAD SIT), more than one peak formation was observed in the heat release graph depending on the combustion characteristic. With the effect of both natural gas use and SIT, it was observed that HC and CO formations were almost not seen, while NOX formation remains above a certain level.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3