Numerical study on energy absorption characteristics of bio-mimetic multi-cell thin-walled structures with different hierarchy

Author:

Hao Peng12,Li Lin’an1,Liu Kai3ORCID,Xie Zhiqiang4,Du Jianxun5ORCID

Affiliation:

1. School of Mechanical Engineering, Tianjin University, Tianjin, China

2. School of Aeronautical Engineering, Civil Aviation University of China, Tianjin, China

3. School of Aerospace Engineering, Tsinghua University, Beijing, China

4. College of Chemical Engineering and Safety, Binzhou University, Binzhou, China

5. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Abstract

Horsetail plant is the most primitive terrestrial plant bred by spores. After hundreds of millions of years of evolution, the internal structure of horsetail plant stem is composed of multiple cavity which brings excellent impact resistance. The investigation of the internal thin-walled structure of horsetail plant can be used to improve the energy absorption property of the existing thin-walled structure, and has important significance and application potential for the design of anti-collision structure. In this study, four kinds of bio-mimetic thin-walled models with different shapes of cross-sections were proposed and established based on the horsetail plants, and the energy absorption values of the structures were calculated and analyzed by numerical method. The squ-3rd structure with the highest specific energy absorption value of 49.121 kJ/kg was obtained. Then the specific energy absorption value and crushing force efficiency of the structure under different parameters, including wall thickness, side length height ratio, and impact angle were calculated and discussed. Based on the numerical simulation results, we found that for the third-order form of structure with square cross-section, the structure with the wall thickness between 1 and 1.25 mm showed better crushing resistance. And, the energy absorption characteristics of the structure were found to have better performance when the side length height ratio is 1:1.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Central University Basic Research Fund of China

natural science basic research program of shaanxi province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3