A new hybrid approach for reliability-based design optimization of structural components

Author:

Demirci Emre1,Yıldız Ali Rıza1

Affiliation:

1. Bursa , Turkey

Abstract

Abstract Reliability-based design optimization (RBDO) is an effective method for structural optimization due to its ability to take into consideration uncertainties in design variables. Performance measure approach (PMA) based methods are commonly utilized to evaluate the probabilistic constraints of RBDO problems. The advanced mean value (AMV) method is a very commonly used due to its simpleness and effectiveness. However, the AMV method sometimes produces unstable and inefficient results for concave and highly nonlinear limit-state functions. In order to improve robustness and efficiency, many methods have been developed, for example, chaos control based and conjugate gradient-based methods. These methods lead to more stable results as compared with the AMV approach but they are inefficient for use in complex and convex limit-state functions. The RBDO of structural components is often a difficult issue due to complicated constraints. In this paper, a novel hybrid approach, referred to as “hybrid gradient analysis (HGA)” is introduced for the evaluation of both convex and concave constraint functions in RBDO. The HGA method combines AMV and conjugate gradient analysis (CGA). The robustness, simpleness and effectiveness of the proposed HGA method are compared with various PMA methods aimed at reliability such as AMV, chaos control (CC), conjugate mean value (CMV), modified chaos control (MCC), hybrid mean value (HMV) and CGA methods by means of several nonlinear convex/concave limit-state functions and structural RBDO problems. Reliability analysis and RBDO results point out that the HGA approach introduced here is more effective and robust than the well-known approaches.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3