Effects of multiple injection strategies on gaseous emissions and particle size distribution in a two-stroke compression-ignition engine operating with the gasoline partially premixed combustion concept

Author:

Bermúdez Vicente1,Ruiz Santiago1,Novella Ricardo1,Soto Lian1ORCID

Affiliation:

1. Universitat Politècnica de València, CMT-Motores Térmicos, Valencia, Spain

Abstract

In order to improve performance of internal combustion engines and meet the requirements of the new pollutant emission regulations, advanced combustion strategies have been investigated. The newly designed partially premixed combustion concept has demonstrated its potential for reducing NOx and particulate matter emissions combined with high indicated efficiencies while still retaining proper control over combustion process by using different injection strategies. In this study, parametric variations of injection pressure, second injection and third injection timings were experimentally performed to analyze the effect of the injection strategy over the air/fuel mixture process and its consequent impact on gaseous compound emissions and particulate matter emissions including its size distribution. Tests were carried out on a newly designed two-stroke high-speed direct injection compression-ignition engine operating with the partially premixed combustion concept using 95 research octane number gasoline fuel. A scanning particle sizer was used to measure the particles size distribution and the HORIBA 7100DEGR gas analyzer system to determine gaseous emissions. Three different steady-state operation modes in terms of indicated mean effective pressure and engine speed were investigated: 3.5 bar indicated mean effective pressure and 2000 r/min, 5.5 bar indicated mean effective pressure and 2000 r/min, and 5.5 bar indicated mean effective pressure and 2500 r/min. The experimental results confirm how the use of an adequate injection strategy is indispensable to obtain low exhaust emissions values and a balance between the different pollutants. With the increase in the injection pressure and delay in the second injection, it was possible to obtain a trade-off between NOx and particulate matter emission reduction, while there was an increase in hydrocarbon and carbon monoxide emissions under these conditions. In addition, the experiments showed an increase in particle number emissions and a progressive shift in the particles size distribution toward larger sizes, increasing the accumulation-mode particles and reducing the nucleation-mode particles with the decrease in the injection pressure and delay in the third injection.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3