Shift control of a dry-type two-speed dual-clutch transmission for an electric vehicle

Author:

Hong Sungwha1,Son Hanho1,Lee Seulgi1,Park Jongyun2,Kim Kyungha2,Kim Hyunsoo1

Affiliation:

1. School of Mechanical Engineering, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea

2. Eco-Vehicle Drive Train Engineering Design Team, Hyundai Motor Company, Hwaseong, Republic of Korea

Abstract

In this paper, a shift control algorithm to improve the shift quality was proposed for an electric vehicle with a dry-type two-speed dual-clutch transmission. To analyse the shift characteristics of the target electric vehicle, dynamic models for the two-speed dual-clutch transmission and the drivetrain were developed. Based on the dynamic models, dynamic equations for the transient shift states were derived, and a shift performance simulator was constructed. From analysis of the transient shift state, it was found that the fluctuations in the driveshaft torque, which cause the shift quality to deteriorate, occurred as a result of the inertia torque. Based on the analytical results, a control algorithm was proposed using traction motor torque control as well as shift actuator stroke control. For traction motor control, a compensation torque was applied during the inertia phase. In that phase, actuator stroke control was performed by considering the torque margin and the kissing point during the torque phase instead of the existing map-based control. To evaluate the performance of the proposed control algorithm, a test bench for the target electric vehicle was developed. From the experimental results, it was found that the variations in the driveshaft torque and in the jerk were reduced by the proposed control algorithm, which thereby provides an improved shift quality.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3