Attempt to correlate simulations and measurements of turbine performance under pulsating flows for automotive turbochargers

Author:

Avola Calogero1,Copeland Colin1,Romagnoli Alessandro2,Burke Richard1,Dimitriou Pavlos1

Affiliation:

1. Department of Mechanical Engineering, University of Bath, UK

2. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

Abstract

The paper attempts to correlate simulations and measurements of turbine performance under pulsating flows for automotive turbochargers. Under real automotive powertrain conditions, turbochargers are subjected to pulsating flows, due to the motion of the engine’s valves. Experiments on a purpose-built 2.2 L diesel engine gas-stand have allowed the quantification of unsteady pulsating turbine performance. Temperature, pressure and mass flow measurements are fundamental for the characterisation of turbine performance. An adequate sampling frequency of the instruments and acquisition rates are highly important for the quantification of unsteady turbomachine performance. In the absence of fast, responsive sensors for monitoring mass flow and temperature, however, appropriate considerations would have to be taken into account when making estimates of turbine performance under pulsating flows. A 1D model of the engine gas-stand has been developed and validated against experimental data. A hybrid unsteady/quasi-steady turbine model has been adopted to identify unsteadiness at the turbine inlet and outlet. To evaluate isentropic turbine efficiency and reduce the influence of external heat transfer upon measurements, the turbine inlet temperature has been measured experimentally in the vicinity of the turbine rotor in the inlet section, upstream of the turbine tongue. The hybrid unsteady/quasi-steady turbine model considers the presence of unsteady flows in the turbine inlet and outlet, leaving the rest of the turbine to react quasi-steadily. Virtual sensors and thermocouples have been implemented in a 1D model to correlate experimental time-averaged temperature measurements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3