Research on energy saving and control characteristics of back pressure controllable variable speed pump controlled steering system for heavy vehicles

Author:

Du Heng12ORCID,Li Hanjin12,Ding Kaiyi12,Li Su12,Yu Jianchao12ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China

2. Key Laboratory of Fluid Power and Intelligent Electro-Hydraulic Control (Fuzhou University), Fujian Province University, China

Abstract

Steering system of heavy vehicle facing intelligent and green development needs to satisfy the requirements of high precision and energy-efficient dynamic steering. Traditional steering systems use valved servo systems, which offer high steering accuracy but result in significant energy dissipation at the valve ports. In contrast, the variable speed pump control system (VSPCS) realizes the precise servo of steering system through direct volume control, which basically eliminates the energy dissipation at the valve port. However, the VSPCS lacks sufficient system stiffness due to low back pressure, making it difficult to achieve precise steering. To address these limitations, this paper proposes a back pressure controllable variable speed pump controlled steering system scheme (BCVSPCSS), which combines the energy-efficient flow supply of the VSPCS with a servo-proportional valve is used for back pressure control to, improving the dynamic performance of the system. This integration allows for precise steering while maintaining energy efficiency; The design of a dual objective nonlinear control strategy for angle and back pressure is crucial to deal with uncertainty and nonlinearity in the system. The Lyapunov analysis shows that the closed-loop system has asymptotic stability. In this paper, the experimental bench of BCVSPCSS is built for experimental verification. The results show that back pressure control effectively enhances the system’s immunity. Under the same working conditions, the maximum angle error of the two systems is roughly the same, both around 1°, while the energy consumption of BCVSPCSS is reduced by about 84.6% compared to the valve controlled steering system.

Funder

Science Fund for Distinguished Young Scholars of Fujian Province

Project of the Fujian College Industry Academia Cooperation

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3