Energy Savings in Hydraulic Hybrid Transmissions through Digital Hydraulics Technology

Author:

Azzam Israa,Pate Keith,Garcia-Bravo JoseORCID,Breidi FaridORCID

Abstract

Hydraulic hybrid drivetrains, which are fluid power technologies implemented in automobiles, present a popular alternative to conventional drivetrain architectures due to their high energy savings, flexibility in power transmission, and ease of operation. Hydraulic hybrid drivetrains offer multiple environmental benefits compared to other power transmission technologies. They provide heavy-duty vehicles, e.g., commercial transportation, construction equipment, wagon handling, drilling machines, and military trucks, with the potential to achieve better fuel economy and lower carbon emissions. Despite the preponderance of hydraulic hybrid transmissions, state-of-the-art hydraulic hybrid drivetrains have relatively low efficiencies, around 64% to 81%. This low efficiency is due to the utilization of conventional variable displacement pumps and motors that experience high power losses throughout the drive cycle and thus fail to maintain high operating efficiency at lower volumetric displacements. This work proposes and validates a new methodology to improve the overall efficiency of hydraulic hybrid drivetrains by replacing conventional pump/motor units with their digital counterparts. Compared to conventional pump/motors, the digital pump/motor can achieve higher overall efficiencies at a wide range of operating conditions. A proof-of-concept digital pump/motor prototype was built and tested. The experimental data were integrated into a multi-domain physics-based simulation model of a series hydraulic hybrid transmission. The proposed methodology permits enhancing the overall efficiency of a series hydraulic hybrid transmission and thus allows for energy savings. Simulating the system at moderate load-speed conditions allowed achieving a total efficiency of around 89%. Compared to the average efficiency of the series hydraulic hybrid drivetrains, our simulation results reveal that the utilization of the state-of-the-art digital pump enables improving the total efficiency of the series hydraulic hybrid drivetrain by up to 25%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3