Damaged-aircraft trailer dynamics simulation and vibration optimization

Author:

Hong Zhenyu1,Yu Xiaoli1ORCID,Zhang Dongsheng1ORCID,He Zhenpeng1ORCID

Affiliation:

1. Civil Aviation University of China, Tianjin, China

Abstract

As a rescue vehicle, damaged-aircraft trailer is used to move damaged aircraft quickly to restore the normal order of the airport. Several damaged-aircraft trailer parameters such as tire stiffness and damping of the suspension hydraulic system influence the dynamic performance significantly. In this article, a simplified 9 degrees of freedom model of damaged-aircraft trailer is established considering the physical parameters of suspension and tires. The relationships among the parameters of the suspension hydraulic components, the elastic force and damping force are established, and then the optimization model of the whole vehicle is obtained. In order to reduce the secondary damage to the aircraft, the multi-island genetic algorithm is used to optimize the suspension system and tire. During the calculation, the maximum vertical acceleration of damaged-aircraft trailer is taken as objective function for variable parameters of the suspension hydraulic system and the tire. As a result, the performance of the vehicle is greatly improved with the maximum acceleration of 0.2 m/s2 after optimization.

Funder

United National Science Funds and Civil Aviation Funds

Basic Research Funds for National University

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3