An algorithm for estimating the ultimate speed of vehicles on wet roads

Author:

Guo Jinfei1ORCID,Li Bo1,Bei Shaoyi1,Yin Guodong2ORCID,Zhang Lanchun1,Meng Fengjuan1,Hu Shaofeng3,Daoud Walid4,Hu Mengdan1

Affiliation:

1. Jiangsu University of Technology, Changzhou, Jiangsu, China

2. Southeast University, Nanjing, Jiangsu, China

3. Beijing Automotive Industry Holding Co Ltd, Changzhou, China

4. City University of Hong Kong, Hong Kong, China

Abstract

Real-time estimation of a vehicle’s ultimate hydroplaning speed is crucial for ensuring its safety and stability, especially in rainy weather conditions. This paper proposes an algorithm for estimating the ultimate hydroplaning speed of vehicles on wet and slippery road surfaces based on finite element analysis of tire. Using the ABAQUS simulation software, a finite element model of a 205/55 R16 radial tire is established. Subsequently, a fluid-structure coupling model between the tire, water layer, and road surface is developed. The finite element method is employed to simulate and analyze the effects of tire inflation pressure, water layer thickness, vertical load, and tread wear on the vehicle’s ultimate hydroplaning speed. Simulation results indicate that an increase in tire inflation pressure and vertical load leads to an increase in the ultimate hydroplaning speed, while tread wear and an increase in water layer thickness result in a decrease. Finally, based on the simulation analysis data, a BP neural network-based estimation algorithm for the vehicle’s ultimate hydroplaning speed is proposed by combining the relationship between tire inflation pressure, tire vertical load, tread wear, water layer thickness, and ultimate hydroplaning speed. The results show that the estimated ultimate hydroplaning velocity profile has a high degree of overlap with the actual ultimate hydroplaning velocity profile, with a maximum error of no more than 5 km/h and an average percentage error of 2.31416%.

Funder

Major Program of Natural Science Foundation of the Jiangsu Higher Education of China

National Natural Science Foundation of China

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Changzhou International Science and Technology Cooperation Fund

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3