A novel evaluation on rolling resistance characteristics of truck tire through the simplified experimental modal analysis

Author:

Zhu Chengwei1,Yan Jingjing2,Zhuang Ye1ORCID,Gao Xueliang1,Chen Qiang1,Wei Jiannan1,Ding Haitao1

Affiliation:

1. State Key Lab of Automotive Simulation and Control, Jilin University, Changchun, China

2. Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China

Abstract

A novel evaluation method for the rolling resistance characteristics of truck tire is proposed, in which a simplified modal experiment is suggested through a single-point vibration sampling from the tire surface with a polyvinylidene fluoride (PVDF) piezoelectric film. Three truck tires are utilized in the modal experiments, and the half-power bandwidth method is employed to identify the damping characteristics of the three tires. The damping characteristics of the tires are ranked by their values. These values are compared with their corresponding rolling resistance coefficients to manifest their correlative relationship. The experimental results, which are obtained from the modal experiment and the rolling resistance test, indicate that the modal parameters and the half-power bandwidth of the tire are exactly correlated to the rolling resistance coefficients. Furthermore, the damping ratios of the tires are correlated well with the rolling resistance coefficients among the tires. Overall, the proposed evaluation method could effectively evaluate the rolling resistance characteristics of the tire, which enable it to be a simple and economical alternative over the conventional tire rolling resistance experiments.

Funder

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3