Development of a model predictive controller for an active torsional vibration damper to suppress torsional vibrations in vehicle powertrains

Author:

Yüceşan Alişan1ORCID,Mugan Ata2

Affiliation:

1. Mechatronics Center, Istanbul Technical University, Istanbul, Turkey

2. Department of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey

Abstract

The pressure of exhaust emission regulations on automotive manufacturers to reduce environmental pollution and fuel consumption of internal combustion engines (ICEs) have stimulated the works on the downsizing, downspeeding, and turbo supercharging concepts which result in boosted engine torsional vibrations. Despite significant momentum in the implementation of those concepts in modern ICEs in recent decades, similar progress has not taken place in parallel at torsional vibration isolation systems. To this end, this article centers on the development and implementation of a model predictive controller (MPC) on a novel active torsional vibration damper (ATVD) in which inertia, stiffness rate, and damping rate parameters can be varied to minimize torsional vibration transmission to the vehicle powertrain. Dynamic response of the ATVD is examined using an MPC inside a closed-loop control architecture with predicted variables. The MPC structure, state-space plant model, and physical constraint definitions are composed to be utilized in prediction models at various engine operating points. The MPC performance is evaluated in a co-simulation environment using Simcenter Amesim, NX Motion, and Matlab Simulink software, and are compared with that of the fuzzy logic controller (FLC). The simulation results clearly indicate that the MPC applied to the ATVD system has certain advantages over the FLC and is able to provide satisfactory isolation of the powertrain from engine-borne torsional vibrations while satisfying the physical constraints.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3