Neural network optimization algorithm based non-singular fast terminal sliding-mode control for an uncertain autonomous ground vehicle subjected to disturbances

Author:

Hajjami Lhoussain El1ORCID,Mellouli El Mehdi2,Žuraulis Vidas3ORCID,Berrada Mohammed1,Boumhidi Ismail4

Affiliation:

1. Laboratory of Artificial Intelligence, Data Sciences and Emerging Systems, School of Applied Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco

2. Laboratory of Engineering, Systems, and Applications, School of Applied Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco

3. Department of Automobile Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania

4. LISAC Laboratory, FSDM, Sidi Mohamed Ben Abdellah University, Fez, Morocco

Abstract

As computer computing capabilities increase, optimization algorithms are becoming more useful for solving engineering problems. Up to now, several metaheuristic algorithms have been exploited in control engineering. However, this effort remains weak in addressing the autonomous ground vehicles (AGVs) trajectory tracking problem. This research presents a novel optimal approach merging the robust non-singular fast terminal sliding-mode control method (NFTSMC) and the neural network optimization algorithm (NNA) for automatic lane changing. First, a reference double lane-change path (DLC) is designed, and the robust non-singular fast terminal sliding-mode steering controller is developed, according to Lyapunov stability theory, to suppress the lateral deviation and ensure the yaw stability. Then, the control strategy is optimized by the NNA algorithm to adjust the steering controller optimally while avoiding local optimums. A comparison, under the same conditions, with the particle swarm optimization algorithm (PSO) revealed the superiority of the control law resulting from the NNA-based optimization. Furthermore, the proposed approach shows its excellent tracking performance versus the integrated backstepping sliding-mode controller (IBSMC) and the adaptive sliding-mode control (ASMC) under severe conditions typical of real-world lane changes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3