Development and validation of an advanced motorcycle riding simulator

Author:

Cossalter V1,Lot R1,Massaro M2,Sartori R1

Affiliation:

1. DIMEG, Department of Innovation in Mechanics and Management, University of Padova, Padova, Italy

2. DIMEG, Department of Innovation in Mechanics and Management, University of Padova, Padova, Italy   matteo.massaro@unipd.it

Abstract

This paper illustrates and discusses the main features of the motorcycle riding simulator designed and built at the University of Padua over recent years. The simulator has been developed for a variety of purposes: to develop and test electronic devices aimed at improving rider safety and vehicle performance (antilock braking systems, traction control systems, etc.), to investigate different design choices and parameter effects on vehicle dynamics, to train riders, and to study their behaviours in different scenarios (normal riding, dangerous situations, etc.). Within the simulator the rider sits on a motorcycle mock-up provided with all the inputs available on a real motorcycle (throttle, clutch, brakes, etc.). These controls are used as inputs for an advanced virtual motorcycle model which computes the real-time vehicle dynamics. With the aim of giving the rider a proper motion cue, a washout filter converts the motion of the virtual motorcycle into the proper motion of a five-degrees-of-freedom motorcycle mock-up. Finally the audiovisual cues are delivered with a 180° panel and 5.1 surround sound system. To validate the simulator, a specific protocol which includes both an objective evaluation and a subjective evaluation was designed and carried out. External devices such as advanced rider assistant systems, on-bike information systems, and human–machine interfaces can be easily integrated into the simulator by means of a standard controller area network.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensibilization of a motorcycle simulator to the effects of the roll motion: Modelling and experimental validation;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-11-30

2. Similarities in steering control between cars and motorcycles: application to a low-complexity riding simulator;Meccanica;2022-10-25

3. ROS2 as an Interface for a Motorcycle Simulator;IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society;2022-10-17

4. Rider in the Loop Dynamic Motorcycle Simulator: An Instrumentation Strategy Focused on Human Acceptability;Electronics;2022-08-27

5. Motorcycle simulator subjective and objective validation for low speed maneuvering;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3