Motorcycle simulator subjective and objective validation for low speed maneuvering

Author:

Grottoli Marco12ORCID,Mulder Max1,Happee Riender1

Affiliation:

1. Delft University of Technology, Delft, The Netherlands

2. Siemens Digital Industries Software, Leuven, Belgium

Abstract

The use of driving simulators for training and for development of new vehicles is widely spread in the automotive industry. In the last decade, a few motorcycle riding simulators have been developed for similar purposes, with focus on maneuvering at high speed. This article presents the subjective and objective evaluation of a motorcycle riding simulator specifically for low speed longitudinal and lateral maneuvering, between 0 and 10 ms–1. An experiment was conducted with and without platform motion, focusing on three maneuvers: acceleration from standstill, braking to standstill and turning at constant speed. Participants briefly evaluated the fidelity of the simulator after each maneuver and more extensively after each motion condition. Behavioral fidelity was evaluated using experimental data measured on an instrumented motorcycle. Overall, the results show that the participants could reproduce the selected maneuvers without falling or losing balance, reporting a sufficient level of simulator realism. In terms of subjective fidelity, platform motion had a positive effect on simulator presence, significantly increasing the feeling of being involved in the virtual environ0ment. In terms of behavioral fidelity, the comparison between the simulator and experimental results shows good agreement, with a limited positive influence of motion for the braking maneuver, which indicates that for this maneuver the use of motion is beneficial to reproduce the real-life experience and performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Risky riding behaviors among motorcyclists and self-reported safety events in Pakistan;Transportation Research Part F: Traffic Psychology and Behaviour;2024-08

2. Validation of a novel bicycle simulator with realistic lateral and roll motion;Vehicle System Dynamics;2023-10-04

3. Investigation of a Pitch Function for Motion-Based VR Bicycle Simulators;Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems;2023-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3