Effects of nozzle hole size and rail pressure on diesel spray and mixture characteristics under similar injection rate profile – experimental, computational and analytical studies under non-evaporating spray condition

Author:

Safiullah 1ORCID,Nishida Keiya1,Ogata Youichi1,Oda Tetsuya2,Ohsawa Katsuyuki2

Affiliation:

1. Department of Mechanical Systems Engineering, Graduate School of Engineering, University of Hiroshima, Higashihiroshima, Japan

2. Department of Mechanical Engineering, Graduate School of Engineering, Tottori University, Tottori, Japan

Abstract

In the present work, effects of nozzle hole size and rail pressure under non-evaporating spray condition are demonstrated. Three single hole injectors with the bore size of 0.101, 0.122, and 0.133 mm are experimented with injection pressures of 140, 45, and 38 MPa respectively to achieve similar injection rate profile. Diesel spray experiments implement Diffused Backlight Illumination Technique where diffused background is obtained for the High Speed Video camera imaging. Experimental results are then validated with computational and analytical studies. The CFD simulation requires the injection rate profile and spray cone angle as a primary input; thus, based on the High Speed Video Camera start of injection frame the 5 kHz Butterworth low-pass frequency filter is applied to the injection rate raw data. While, the spray cone angle is predicted using a simple model obtained from the relationship between the injection velocity, fluctuating velocity at the nozzle exit and total pressure loss factor of the injector. The experimental spray tip penetration of all three injectors is almost identical as the similar injection rate profile is adopted. Although, the mixture characteristics are better for 0.101 mm hole diameter since the smaller hole diameter with highest injection pressure depicts larger spray angle and better atomization. The computational study agrees with experiments qualitatively; however, the quantitative and qualitative agreements are seen in the analytical study.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3