Trajectory planning and tracking of dynamic lane change for autonomous buses considering vehicle stability in dynamic traffic scenarios

Author:

Nie Zhigen1ORCID,Zhou Yi1,Lian Yufeng2

Affiliation:

1. Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming, China

2. School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, Jilin, China

Abstract

Trajectory planning and tracking of lane change are critical technologies for autonomous buses. Characteristics of the buses susceptible to stability problems resulting from the high height, large passenger capacity and long lengths, coupling the dynamic traffic with the dynamic changes in the states of adjacent vehicles and road adhesion coefficient, put forward great challenges in lane change for autonomous buses (ABs). To cope with the foregoing challenges, a framework is proposed to achieve the trajectory planning and tracking of dynamic lane change for ABs. For trajectory planning approach, the trajectory planning and replanning is optimized in the safe range of longitudinal length of the lane-changing trajectory to obtain the real-time reference trajectory, combining consideration of vehicle yaw, roll stability and lane-changing efficiency. The minimum longitudinal length of lane-changing trajectory determined by the yaw stability and roll stability of ABs, combined with the maximum length formed by the adjacent vehicles with dynamic states, form the real-time safe range for lane-changing trajectory planning. For trajectory tracking approach, a tracking approach using model predictive control based on multipoint preview is proposed to achieve the real-time planned trajectory tracking considering buses stability. The effectiveness of the proposed strategy is evaluated by simulating an experimentally validated Trucksim model in different dynamic traffic scenarios to demonstrate the capability of the strategy in trajectory planning and tracking, and guaranteeing vehicle stability for dynamic lane change of ABs.

Funder

National Natural Science Foundation of China

Xingdian Talent Support Planning Project

Yunnan Science and Technology Planning Project

HORIZON TMA MSCA

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3