Location recognition of unmanned vehicles based on visual semantic information and geometric distribution

Author:

Cao Wenguan1ORCID,Huang Xiaoci1,Shu Fanglin1

Affiliation:

1. Shanghai University of Engineering Science, Shanghai, China

Abstract

Due to the influence of weather, light, season and angle changes, the appearance of objects changes visually, which makes it difficult for unmanned vehicles that rely on visual positioning to complete their positioning work. This paper proposes a coordinated positioning method that is composed of semantic information and geometric relationships distribution (GRD), which improves the robustness of unmanned vehicle location under the above conditions. First, we improved the FAST-SCNN semantic segmentation network and replaced its fully connected layer with the conv4-3 module to prevent the spatial information of the image from being lost in the fully connected layer. At the same time, the conv4-3 layer contains the richest semantic information, we use image semantic content to create a dense and prominent scene description. These prominent descriptions were learned from a large data set of perceptual changes. The method can accurately segment geometrically stable image regions. We combine the characteristics of these highlighted areas with the existing overall representation to produce a more robust scene descriptor. Second, a method is designed to integrate the matching of semantic labels and geometric distribution relations, which is a new closed loop location recognition label and landmark map. The geometric pair relationship between the ground marks is encoded as a continuous probability density function, the GRD function, which is expressed by a Laguerre polynomial and Fourier series basis expansion. This orthogonal basis representation allows for efficient computation of rotation and translation invariants, which are used to compare signatures and search for potential loop closure candidates. Finally, we evaluate our method with some of the most advanced algorithms, such as OpenSeqSLAM, AlexNet and VSO, to demonstrate its advantages. The experimental results for representative data sets show that the method based on Fast-SCNN is superior to other methods.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3