Path-following control of autonomous ground vehicles based on input convex neural networks

Author:

Jiang Kai1ORCID,Hu Chuan2ORCID,Yan Fengjun1

Affiliation:

1. Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada

2. Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA

Abstract

This paper studies the path-following problems in autonomous ground vehicles (AGVs) through predictive control and neural network modeling. Considering the model of AGVs is usually difficult to construct by first principles accurately, a data-driven approach based on deep neural networks is proposed to deal with the system identification tasks. Although deep neural networks have good representation capability for complex system, they are still hard to use for control area due to their nonconvexities and nonlinearities. Therefore, to make a trade-off between control tractability and model accuracy, the input convex neural networks (ICNNs) are developed to describe the dynamics of AGVs. As the designed neural networks are convex with regard to the inputs, the predictive control problem is converted to a convex optimization problem and thus it’s easier to get feasible solutions. Besides, for adapting to different road conditions and some other disturbances, a periodically online learning algorithm is designed to update the neural network. Finally, two driving simulations under CarSim-Simulink platform are conducted to prove the superiority of our proposed techniques.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3