Hierarchical coordinated control of multi-axle steering for heavy-duty vehicle based on tire lateral and longitudinal forces optimization

Author:

Du Heng12ORCID,Zhu Xiaowei12ORCID,Liu Qihui12ORCID,Ren Tianyu12,Wang Yunchao3

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian, China

2. Key Laboratory of Fluid Power and Intelligent Electro-Hydraulic Control (Fuzhou University), Fujian Province University, Fuzhou, Fujian, China

3. School of mechanical and energy engineering, Jimei University, Xiamen, China

Abstract

Traditional multi-axle steering vehicle often adopts linear state feedback control, which is difficult to ensure high-precision trajectory tracking under all working conditions. Moreover, due to the failure to consider the optimal distribution of tire lateral and longitudinal forces, tires are prone to problems such as uneven load rates and wear. In this paper, considering the over-redundant and nonlinear characteristics of three-axle vehicle, a hierarchical coordinated control strategy is proposed. In the upper layer, the trajectory tracking controller is designed based on the robust nonlinear sliding mode control theory. In the middle layer, based on the optimization conditions of tire load rate and dissipative energy, the lateral and longitudinal forces optimal distribution controller is constructed under the constraint of friction circle. In the lower layer, the lateral and longitudinal forces are finally converted into tire angles and torques with the tire inverse model. The results show that the hierarchical coordinated control strategy can ensure that the multi-axle vehicle can achieve high-precision trajectory tracking under all-terrain load conditions, and the load rate and wear of each tire are relatively uniform. The coordinated control strategy proposed in this paper considers the influence of nonlinear characteristic of vehicle and tire lateral and longitudinal forces distribution on steering coordination, which can provide an important theoretical basis for the further improvement of steering coordination of multi-axle vehicle.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3