The effects of the combustion chamber geometry and a double-row nozzle on the diesel engine emissions

Author:

Choi Seungmok1,Shin Seung-Hyup2,Lee Jeongwoo2,Min Kyoungdoug2,Choi Hoimyung3

Affiliation:

1. Transportation Technology R&D Center, Argonne National Laboratory, Lemont, Illinois, USA

2. School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea

3. Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do, Republic of Korea

Abstract

This paper presents how injector nozzle distributions and the combustion chamber geometry affect the emission characteristics of diesel engines. The number of nozzle holes was increased from seven to 12 by a using double-row nozzle distribution to enhance the air–fuel mixing and the spatial distribution of the spray while avoiding spray overlap. The combustion chamber geometry was modified to have a wide shallow two-step bowl, which ensured adequate spray penetration with the double-row nozzle, to observe the influence of the spray–piston interaction on the combustion and emissions. Three hardware combinations (a seven-hole single-row nozzle with a conventional piston, a 12-hole double-row nozzle with a conventional piston, and a two-step piston) were tested in a single-cylinder direct-injection diesel engine under three boost and exhaust gas recirculation conditions. The injection timing was adjusted to result in a similar power by maintaining 50% of the total fuel mass fraction burned points for each hardware combination. For a conventional boost pressure (1.10 bar) and 30% exhaust gas recirculation, the 12-hole double-row nozzle with a conventional piston exhibited the best emission characteristics with a significant reduction in the particulate matter emissions. For a high boost pressure (1.30 bar) and 30% conventional exhaust gas recirculation, the nitrogen oxide emissions slightly increased and the particulate matter emissions decreased for the 12-hole double-row nozzle with a conventional piston compared with those for the seven-hole single-row nozzle. The two-step piston resulted in decreased particulate matter emissions but increased nitrogen oxide emissions under a high boost pressure. For 60% high exhaust gas recirculation, which is characterized by low-temperature combustion, the particulate matter emissions, the carbon monoxide emissions, and the total hydrocarbon emissions decreased simultaneously without an increase in the nitrogen oxide emissions using the 12-hole double-row nozzle with a two-step piston.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3