Multi-scale traffic sign detection model with attention

Author:

Fan Bei Bei1ORCID,Yang He1ORCID

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, People’s Republic of China

Abstract

The current traffic sign detection technology is disturbed by factors such as illumination changes, weather, and camera angle, which makes it unsatisfactory for traffic sign detection. The traffic sign data set usually contains a large number of small objects, and the scale variance of the object is a huge challenge for traffic indication detection. In response to the above problems, a multi-scale traffic sign detection algorithm based on attention mechanism is proposed. The attention mechanism is composed of channel attention mechanism and spatial attention mechanism. By filtering the background information on redundant contradictions with channel attention mechanism in the network, the information on the network is more accurate, and the performance of the network to recognize the traffic signs is improved. Using spatial attention mechanism, the proposed method pays more attention to the object area in traffic recognition image and suppresses the non-object area or background areas. The model in this paper is validated on the Tsinghua-Tencent 100K data set, and the accuracy of the experiment reached a higher level compared to state-of-the-art approaches in traffic sign detection.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Analysis of Various Deep Learning Models for Traffic Signs Recognition from the Perspective of Bangladesh;Lecture Notes in Networks and Systems;2024

2. Review of a Comparative Survey on the Detection and Classification of Traffic Signs;2023 7th IEEE Congress on Information Science and Technology (CiSt);2023-12-16

3. Using Knowledge Awareness to Improve Safety of Autonomous Driving;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

4. Traffic sign detection and recognition under low illumination;Machine Vision and Applications;2023-07-20

5. A Super-Resolution Method for Small Object Detection in Road Scenes;2023 International Conference on Advanced Robotics and Mechatronics (ICARM);2023-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3