Load spectrum for automotive wheels hub based on mixed probability distribution model

Author:

Geng Shuanglong1,Liu Xintian1ORCID,Yang Xiaobing1,Meng Zhengyun1,Wang Xiaolan1,Wang Yansong1

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, P.R. China

Abstract

In actual engineering, the actual road test or indoor bench test is usually used to collect the data of the road load of the parts to acquire the fatigue life estimation of the auto parts. This paper proposes a method for load spectrum construction based on the mixed distribution probability model using the data of the road load spectrum collected in the test site. Pau Ta criteria outlier elimination and wavelet signal denoising are applied to analyze the original road load spectrum data. Then the maximum likelihood estimation method is used to estimate the generalized Pareto distribution parameters of all excesses. The Pareto distribution is also employed to extrapolate the load spectrum. Through the characteristic analysis of the load spectrum, the one-dimensional and two-dimensional program load spectrum of the hub is established based on the mixed probability distribution model, which provides a theoretical basis for the life prediction of the hub. In addition, the research results of this paper provide inspirations for the fatigue life prediction and fatigue durability bench test of automotive parts subjected to the complexity and variability of random loads.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3