Robust dynamic surface control of vehicle lateral dynamics using disturbance estimation

Author:

Hosseini-Pishrobat Mehran1ORCID,Seyedzavvar Mirali1,Hamed Mohammad Ali1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

Abstract

This paper reports a disturbance estimation-based dynamic surface control method for stabilizing vehicle lateral dynamics through yaw moment control. Based on the single track vehicle model, an uncertain model of the vehicle lateral dynamics is developed which represents the effect of parametric uncertainty and lateral tire force nonlinearity by mismatched, lumped total disturbances. In this model, the longitudinal velocity of the vehicle is considered as a time-varying parameter. Using the developed mathematical vehicle model, an extended state observer is proposed to estimate the total disturbance signals. Next, a dynamic surface controller is designed with the objective of tracking the desired lateral velocity generated by a linear two-degrees-of-freedom vehicle dynamics. The dynamic surface controller uses the estimated disturbances of the extended state observer as feedforward inputs to compensate for the effects of the total disturbances. To achieve an improved robust performance against disturbance estimation errors, the [Formula: see text] control technique is incorporated into the DSC design. To this end, using a norm-bounded representation of the longitudinal velocity, the control design is formulated as the feasibility of a finite number of linear matrix inequalities. The stability and robustness of the extended state observer and the dynamic surface control systems are analyzed in a Lyapunov framework and the required mathematical proofs are presented. Considering a lane change and a J-turn maneuver, extensive numerical simulations are performed to show the effectiveness of the proposed control system. The results confirm the improved performance of the closed-loop system compared to the open-loop one, in various driving and road conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3