Performance enhancements of semi-active vehicle air ISD suspension

Author:

Shen Yujie1ORCID,Chen Ang2,Du Fu34,Yang Xiaofeng2ORCID,Liu Yanling2,Chen Long1

Affiliation:

1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, Jiangsu, China

2. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, Jiangsu, China

3. School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China

4. Chinese Scholartree Ridge Laboratory, China North Vehicle Research Institute, Beijing, China

Abstract

To explore an innovative approach for enhancing the vibration isolation performance of vehicle air suspension systems, this study introduces the inerter element into the vehicle air suspension and investigates the dynamic behavior of the semi-active vehicle air ISD (inerter-spring-damper) suspension. Initially, a dynamic model of the quarter semi-active vehicle air ISD suspension is established, followed by conducting multi-objective optimization of the core parameters using the genetic algorithm. Subsequently, the dynamic performance of the semi-active vehicle air ISD suspension is thoroughly examined through simulations and analyses in both the time and frequency domains. The results demonstrate notable improvements in various aspects: the root-mean-square (RMS) value of the vehicle body acceleration in the semi-active vehicle air ISD suspension is reduced by 12.8%, the RMS value of the suspension working space is decreased by 37.3%, and the RMS value of the dynamic tire load experiences an 8.9% reduction. The findings of this paper indicate that the proposed semi-active vehicle air ISD suspension outperforms both the passive vehicle air suspension and the semi-active vehicle air suspension without an inerter, significantly enhancing the vehicle’s ride comfort, handling stability, and driving safety.

Funder

National Natural Science Foundation of China

Young Elite Scientists Sponsorship Program by CAST

Publisher

SAGE Publications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3