Predicting the pedestrian pre-impact speed from the pedestrian projection distance and vehicle damage measurements

Author:

Wood Denis P1,Elliott Jessica R12,Lyons Mathew2,Augy Sylvain12,Glynn Colin1,Simms Ciaran K2

Affiliation:

1. Denis Wood Associates, Dublin, Ireland

2. Department of Mechanical and Manufacturing Engineering, Trinity College, Dublin, Ireland

Abstract

Methods to estimate the pre-impact pedestrian speed from limited post-accident measurements are required both for biomechanics research and for legal applications following vehicle–pedestrian collisions, but none is currently available. Such a method is presented in this paper. A constant-inertial-property pedestrian model based on the conservation of momentum is first shown to predict satisfactorily the transverse offset of a pedestrian between the primary and secondary impacts in wrap-trajectory vehicle–pedestrian collisions and is then used in a Monte Carlo environment to predict the pedestrian pre-impact speed distribution utilizing an estimate of the vehicle speed based on the pedestrian projection distance, the ratio of the longitudinal offset to the transverse offset for the pedestrian primary and secondary contact locations on the vehicle (indicated by the primary and secondary vehicle damage locations) and, where available, information on the pedestrian gait stance at impact (derived from the injury location on the head). Separate analysis of recently published Fourier relationships between the transverse offset and the contact location on the head derived from modelling with Mathematical Dynamic Models (MADYMO) software is used to show that the gait stance is related to the location on the head of head injuries from the vehicle contact, and that contact locations significantly anterior or posterior of the coronal plane are predominant. Results from the constant-inertial-property pedestrian model show that significant differences occur between the ratio of the transverse offset to the longitudinal offset with the struck leg leading and the corresponding ratio with the struck leg lagging. The special case of nominally zero transverse offset between the primary and secondary damage locations from the contacts of the pedestrian with the vehicle is considered, and pedestrian speed confidence limits for accident reconstruction purposes are provided. Regression equations relating the pedestrian speed to the pedestrian projection distance and the ratio of the transverse offset to the longitudinal offset of the damage location on the vehicle are presented. These provide the first means to predict the pedestrian speed from limited post-accident damage locations on the vehicle and the pedestrian projection distance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference23 articles.

1. Global status report on road safety. Report, World Health Organization, Geneva, Switzerland, 2009.

2. ETSC, The safety of vulnerable road users in the Southern, Eastern and Central European Countries. 2005, European Traffic Safety Council.

3. Real accidents involving vulnerable road users: in-depth investigation, numerical simulation and experimental reconstitution with PMHS

4. Pedestrian Risk from Cars and Sport Utility Vehicles - A Comparative Analytical Study

5. Effects of pre-impact pedestrian position and motion on kinematics and injuries from vehicle and ground contact

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3