Multi-objective optimization design of a multi-layer honeycomb sandwich structure under blast loading

Author:

Wang Zongqian1,Zhou Yunbo1,Wang Xianhui1,Zhang Xinlei1

Affiliation:

1. Department of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, People’s Republic of China

Abstract

In order to improve the shielding performance of the underbody protective structure of military vehicles when subjected to explosive events, a multi-layer honeycomb sandwich structure is proposed. Full consideration of the computing response of the underbody protective structure under blast loading is a large-scale and strongly non-linear problem; a reasonably simplified finite element model is constructed in this paper. LS-DYNA software was employed to simulate blast loading by using the *LOAD_BLAST equation and to compute the dynamic responses of the vehicle; then, full-scale experiments were performed to validate the accuracy of the numerical simulation. The geometric dimensions and the shape parameters of the multi-layer honeycomb sandwich structure are selected as the design variables, thereby establishing a response surface and a mathematical optimization model by employing the design-of-experiments method. A Pareto spatial optimal set is obtained by applying a multi-objective genetic algorithm. Eventually, using the normal-boundary intersection algorithm an optimum design was obtained, which can apparently enhance the shielding performance of the underbody protective structure of military vehicles without increasing the mass.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3