Computational investigation of blast survivability and off-road performance of an up-armoured high-mobility multi-purpose wheeled vehicle

Author:

Grujicic M1,Arakere G1,Nallagatla H1,Bell W C1,Haque I1

Affiliation:

1. Department of Mechanical Engineering, Clemson University, Clemson, SC, USA

Abstract

Since ballistic and blast survivability and off-road handling and stability of military vehicles, such as the high-mobility multi-purpose wheeled vehicle (HMMWV), are two critical vehicle performance aspects, they both (including the delicate balance between them) have to be considered when a new vehicle is being designed or an existing vehicle retrofitted (e.g. up-armoured). Finite-element-based transient non-linear dynamics and multi-body longitudinal dynamics computational analyses were employed, relatively, in the present work to address the following two specific aspects of the performance of an HMMWV: first, the ability of the vehicle to survive detonation of a landmine shallow buried into sand underneath the right wheel of the vehicle and, second, the ability of the vehicle to withstand a simple straight-line brake manoeuvre during off-road travel without compromising its stability and safety of its occupants. Within the first analysis, the kinematic and structural responses (including large-scale rotation and deformation, buckling, plastic yielding, failure initiation, fracture, and fragmentation) of the HMMWV to the detonation of a landmine were analysed computationally using the general-purpose transient non-linear dynamics analysis software ABAQUS/Explicit. The second analysis was carried out using Simpack, a general-purpose multi-body dynamics program, and the main purpose of this analysis was to address the vehicle stability during the off-road travel. The same sand model was used in both types of analysis. Finally, the computational results obtained are compared with general field-test observations and data in order to judge the physical soundness and fidelity of the present approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3