The Effect of Degree of Saturation of Sand on Detonation Phenomena Associated with Shallow-Buried and Ground-Laid Mines

Author:

Grujicic M.1,Pandurangan B.1,Cheeseman B.A.2

Affiliation:

1. Department of Mechanical Engineering, Clemson University, Clemson SC 29634, USA

2. Army Research Laboratory – Survivability Materials Branch, Aberdeen, Proving Ground, MD 21005-5069, USA

Abstract

A new materials model for sand has been developed in order to include the effects of the degree of saturation and the deformation rate on the constitutive response of this material. The model is an extension of the original compaction materials model for sand in which these effects were neglected. The new materials model for sand is next used, within a non-linear-dynamics transient computational analysis, to study various phenomena associated with the explosion of shallow-buried and ground-laid mines. The computational results are compared with the corresponding experimental results obtained through the use of an instrumented horizontal mine-impulse pendulum, pressure transducers buried in sand and a post-detonation metrological study of the sand craters. The results obtained suggest that the modified compaction model for sand captures the essential features of the dynamic behavior of sand and accounts reasonably well for a variety of the experimental findings related to the detonation of shallow-buried or ground-laid mines.

Funder

U.S. Army

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3