Affiliation:
1. School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo, China
Abstract
An optimal delayed feedback control methodology is developed to mitigate the primary and super harmonic resonances of a flexible simply-simply supported beam with piezoelectric sensor and actuator. Stable vibratory regions of the feedback gains are obtained by using the stability conditions of eigenvalue equation. Attenuation ratio is used to evaluate the performance of vibration control by taking the proportion of peak amplitude of primary or super harmonic resonances for the suspension system with and without controllers. Optimal control parameters are obtained using an optimal method, which takes attenuation ratio as the objective function and the stable vibratory regions of the time delay and feedback gains as constraint conditions. The piezoelectric optimal controllers are designed to control the dynamic behaviour of the nonlinear dynamic system. It is found that the optimal feedback gains obtained by the optimal method result in a good control performance.
Subject
Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献