Active vibration hybrid control strategy based on multi-DOFs piezoelectric platform

Author:

Pu Huayan123ORCID,Fu Shibo1ORCID,Wang Min12ORCID,Fang Xuan1,Cai Yi1,Ding Jiheng12,Sun Yi12ORCID,Peng Yan12,Xie Shaorong2,Luo Jun13

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China

2. Engineering Research Center of Unmanned Intelligent Marine Equipment, Ministry of Education, Shanghai, China

3. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, China

Abstract

With the increasing requirements for vibration isolation in multiple degrees of freedom (multi-DOFs), active control strategy is becoming more meaningful. However, the vibration isolation performance is limited by the time delay of feedback control, and cannot meet higher requirements. Therefore, this paper proposes a multi-DOFs active vibration hybrid control (AVHC) strategy based on a piezoelectric platform. The AVHC integrates the adaptive feedforward control based on the modified recursive least squares (MRLS) algorithm, and the feedback control based on the integral force feedback (IFF) algorithm. To achieve advanced response, the ground-based vibration signal is offset by the MRLS algorithm. To further reduce the coupling of multi-DOFs, the feedback and feedforward coordinates are fused through the matrix transformation, and the signals are linearly superimposed by the AVHC. The experimental results show that the AVHC can further reduce the resonance peaks of the three translational directions ( X/ Y/ Z) compared with the feedback (FB) control. The resonance peaks are reduced from 14.6 dB (FB) to 3.11 dB (AVHC), from 14.56 dB (FB) to 5.14 dB (AVHC), and from 12.44 dB (FB) to 3.78 dB (AVHC) in X/ Y/ Z directions, respectively. The attenuation rates are improved by 73.36%, 66.19%, and 63.10% in X/ Y/ Z directions, respectively.

Funder

national natural science foundation of china

Shanghai Shuguang Program

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3