Towards Team-Centered Informatics: Accelerating Innovation in Multidisciplinary Scientific Teams Through Visual Analytics

Author:

Bhavnani Suresh K.1,Visweswaran Shyam2,Divekar Rohit3,Brasier Allan R.4

Affiliation:

1. The University of Texas Medical Branch, Galveston, TX, USA

2. University of Pittsburgh, Pittsburgh, PA, USA

3. Mayo Clinic, Rochester, MN, USA

4. University of Wisconsin, Madison, WI, USA

Abstract

A critical goal of multidisciplinary scientific teams is to integrate knowledge from diverse disciplines for the purpose of developing novel insights and innovations. For example, multidisciplinary translational teams (MTTs) which typically include physicians, biologists, statisticians, and informaticians, aim to integrate biological and clinical knowledge leading to innovations for improving health outcomes. However, such teams face numerous barriers in integrating multidisciplinary knowledge, which is further exacerbated by the explosion of molecular and clinical data generated from millions of patients. Here, we explore the use of a visual analytical representation to help MTTs integrate molecular and clinical data with the goal of accelerating translational insights. The results suggest that the visual analytical representation functioned as a “computational evolving boundary object” which (a) evolved through several emergent states that progressively helped integrate diverse disciplinary knowledge, (b) enabled team members to play primary and supportive roles in evolving the data representation resulting in a more egalitarian team structure, and (c) enabled the team to arrive at novel translational insights leading to domain and methodology publications. However, the interventions also revealed limitations in the approach motivating new visual analytical approaches. These results suggest (a) implications for theory related to modeling computational evolving boundary objects (CEBOs) as an instance of team-centered informatics, and (b) implications for practice related to the design and use of interactive features that enable teams to fluidly evolve CEBOs through emergent states, with the goal of deriving novel insights from large multiomics datasets.

Funder

Patient-Centered Outcomes Research Institute

NIH Clinical Center

Publisher

SAGE Publications

Subject

Applied Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3