A Framework for Modeling and Interpreting Patient Subgroups Applied to Hospital Readmission: Visual Analytical Approach

Author:

Bhavnani Suresh KORCID,Zhang WeibinORCID,Visweswaran ShyamORCID,Raji MukailaORCID,Kuo Yong-FangORCID

Abstract

Background A primary goal of precision medicine is to identify patient subgroups and infer their underlying disease processes with the aim of designing targeted interventions. Although several studies have identified patient subgroups, there is a considerable gap between the identification of patient subgroups and their modeling and interpretation for clinical applications. Objective This study aimed to develop and evaluate a novel analytical framework for modeling and interpreting patient subgroups (MIPS) using a 3-step modeling approach: visual analytical modeling to automatically identify patient subgroups and their co-occurring comorbidities and determine their statistical significance and clinical interpretability; classification modeling to classify patients into subgroups and measure its accuracy; and prediction modeling to predict a patient’s risk of an adverse outcome and compare its accuracy with and without patient subgroup information. Methods The MIPS framework was developed using bipartite networks to identify patient subgroups based on frequently co-occurring high-risk comorbidities, multinomial logistic regression to classify patients into subgroups, and hierarchical logistic regression to predict the risk of an adverse outcome using subgroup membership compared with standard logistic regression without subgroup membership. The MIPS framework was evaluated for 3 hospital readmission conditions: chronic obstructive pulmonary disease (COPD), congestive heart failure (CHF), and total hip arthroplasty/total knee arthroplasty (THA/TKA) (COPD: n=29,016; CHF: n=51,550; THA/TKA: n=16,498). For each condition, we extracted cases defined as patients readmitted within 30 days of hospital discharge. Controls were defined as patients not readmitted within 90 days of discharge, matched by age, sex, race, and Medicaid eligibility. Results In each condition, the visual analytical model identified patient subgroups that were statistically significant (Q=0.17, 0.17, 0.31; P<.001, <.001, <.05), significantly replicated (Rand Index=0.92, 0.94, 0.89; P<.001, <.001, <.01), and clinically meaningful to clinicians. In each condition, the classification model had high accuracy in classifying patients into subgroups (mean accuracy=99.6%, 99.34%, 99.86%). In 2 conditions (COPD and THA/TKA), the hierarchical prediction model had a small but statistically significant improvement in discriminating between readmitted and not readmitted patients as measured by net reclassification improvement (0.059, 0.11) but not as measured by the C-statistic or integrated discrimination improvement. Conclusions Although the visual analytical models identified statistically and clinically significant patient subgroups, the results pinpoint the need to analyze subgroups at different levels of granularity for improving the interpretability of intra- and intercluster associations. The high accuracy of the classification models reflects the strong separation of patient subgroups, despite the size and density of the data sets. Finally, the small improvement in predictive accuracy suggests that comorbidities alone were not strong predictors of hospital readmission, and the need for more sophisticated subgroup modeling methods. Such advances could improve the interpretability and predictive accuracy of patient subgroup models for reducing the risk of hospital readmission, and beyond.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3