Affiliation:
1. Adaptronics, Inc., 1223 Peoples Ave., Troy, NY, USA,
2. The Pennsylvania State University, 134 Materials Research Laboratory, University Park, PA 16802, USA
Abstract
The operation of a linear or rotary ultrasonic motor relies on the production of an elliptical vibration at the surface of the stator. To achieve a suitable vibration state, many ultrasonic motors use a combination of structural modes of the stator. Because these modes may be different in nature, designing a viable stator is not trivial. In addition, the design may be complicated by other considerations, such as the electromechanical coupling coefficient of the piezoelectric elements, the amplitude of the vibrations, and the force factor of the device. Similarly, it may also be desired to incorporate parameters such as the operation frequency, geometrical dimensions and weight, electrical current and so on, which may render the design problem extremely difficult to solve. To help in designing such ultrasonic structures, it is proposed to use the genetic optimization method in combination with the finite element method. The combination of these two design tools is innovative and provides a unique approach to the complex problem of ultrasonic motor design. In this paper, the general aspects of the method utilized are reviewed and an application example that includes experimental verification data is provided.
Subject
Mechanical Engineering,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献