Evaluating basketball player’s rotation line-ups performance via statistical markov chain modelling

Author:

Kolias Pavlos1ORCID,Stavropoulos Nikolaos2ORCID,Papadopoulou Alexandra1,Kostakidis Theodoros1

Affiliation:

1. Section of Statistics and Operational Research, School of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece

2. Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece

Abstract

Coaches in basketball often need to know how specific rotation line-ups perform in either offense or defense and choose the most efficient formation, according to their specific needs. In this research, a sample of 1131 ball possession phases of Greek Basket League was utilized, in order to estimate the offensive and defensive performance of each formation. Offensive and defensive ratings for each formation were calculated as a function of points scored or received, respectively, over possessions, where possessions were estimated using a multiple regression model. Furthermore, a Markov chain model was implemented to estimate the probabilities of the associated formation’s performance in the long run. The model could allow us to distinguish between overperforming and underperforming formations and revealed the probabilities over the evolution of the game, for each formation to be in a specific rating category. The results indicated that the most dominant formation, in terms of offense, is Point Guard-Point Guard-Small Forward-Power Forward-Center, while defensively schema Point Guard-Shooting Guard-Small Forward-Center-Center had the highest rating. Such results provide information, which could operate as a supplementary tool for the coach’s decisions, related to which rotation line-up patterns are mostly suitable during a basketball game.

Publisher

SAGE Publications

Subject

Social Sciences (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3