The influence of yarn fineness and number of yarn layers on in-plane shear properties of 3-D woven fabric

Author:

Guan Liuxiang1ORCID,Li Jialu1,Jiao Ya’nan1

Affiliation:

1. Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, School of Textile Science and Engineering, Tiangong University, Tianjin, China

Abstract

The 3-D layer-to-layer angle-interlock woven fabric (LLAIWF) has good deformability on a complicated contour, which offers them a large application potential in the field of aerospace. This article mainly focuses on the influence of yarn fineness and number of yarn layers on in-plane shear properties of 3-D LLAIWF during bias extension. Two methods of varying the thickness of 3-D LLAIWF were designed: changing yarn fineness and changing the number of yarn layers. The deformation mechanism of LLAIWF in bias-extension test was analyzed. The effects of two methods on in-plane shear deformation were compared and analyzed. In addition to the data processing on the experimental curve, digital image correlation analysis was conducted on the test photographs, from which shear angles in different area shear angle were measured. The mesostructure of fabric during the bias-extension test was observed. The effect of decreasing yarn layers on the mesostructure of fabric was observed by cutting fabric. The results demonstrated that the yarn fineness and the number of yarn layers play a key role in the in-plane shear properties of 3-D LLAIWF. In addition, the changing of fabric thickness causes that the deformation is asymmetrical. The effect of warp yarn fineness is similar to that of weft yarn fineness during the bias-extension test. Reducing the internal yarns of the fabric created a gap, where the yarns were reduced. This gap will affect the deformability of the fabric.

Publisher

SAGE Publications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3