Characterizing fabric crease recovery through sequential image analysis

Author:

Zhang PengfeiORCID,Wang LeiORCID,Li Zhongjian,Pan RuruORCID,Zhou Jian,Gao Weidong

Abstract

Abstract Crease recovery is the ability of a fabric to revert to its original condition after deformation or folding. This recovery process is intricately linked to several fabric properties, including fiber content, yarn structure, weave, fabric finish, and mechanical treatments. Based on the dynamic nature of crease recovery, this paper employs sequential image analysis to track the velocity of fabric crease recovery at different positions and extract simple metrics for measuring fabric shape retention. In each image, the contour of the creased sample is detected, and the contour is modeled by a Gaussian function to calculate its barycenter. The barycenter of a crease is the point in space where the mass of the crease is concentrated, reflecting the shape and position of the crease. During the recovery process, the translation of the barycenter of the creased sample can be determined from the sequential images, leading to the calculation of crease’s recovery velocity. Experimental results demonstrate a linear relationship between the barycentric velocity and logarithmic time. The slope of the resulting fit line, designated as the crease coefficient k, serves as a singular metric for assessing the fabric’s shape retention following the release of the crease. This methodology is benchmarked against traditional fabric crease behavior tests, including the draping coefficient, bending length, and crease recovery angle. It demonstrates that the crease coefficient k offers greater reliability and accuracy across tests on 10 diverse fabric samples, which varied in terms of fiber content, weave, yarn size, and density.

Funder

Scientific Research Start-up Project

Applied Research Project of Public Welfare Technology of Zhejiang Province

Graduate Research and Practice Innovation Project

The National Natural Science Foundation of China

Textile Vision Basic Research Program

Science and Technology Guidance Project of China National Textile and Apparel Council

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3