Evolution of Reinforcement Learning in Uncertain Environments: A Simple Explanation for Complex Foraging Behaviors

Author:

Niv Yael1,Joel Daphna1,Meilijson Isaac2,Ruppin Eytan3

Affiliation:

1. Department of Psychology, Tel Aviv University

2. School of Mathematical Sciences, Tel Aviv University

3. School of Computer Sciences and Sackler School of Medicine, Tel Aviv University

Abstract

Reinforcement learning is a fundamental process by which organisms learn to achieve goals from their interactions with the environment. Using evolutionary computation techniques we evolve (near-)optimal neuronal learning rules in a simple neural network model of reinforcement learning in bumblebees foraging for nectar. The resulting neural networks exhibit efficient reinforcement learning, allowing the bees to respond rapidly to changes in reward contingencies. The evolved synaptic plasticity dynamics give rise to varying exploration/exploitation levels and to the well-documented choice strategies of risk aversion and probability matching. Additionally, risk aversion is shown to emerge even when bees are evolved in a completely risk-less environment. In contrast to existing theories in economics and game theory, risk-averse behavior is shown to be a direct consequence of (near-)optimal reinforcement learning, without requiring additional assumptions such as the existence of a nonlinear subjective utility function for rewards. Our results are corroborated by a rigorous mathematical analysis, and their robustness in real-world situations is supported by experiments in a mobile robot. Thus we provide a biologically founded, parsimonious, and novel explanation for risk aversion and probability matching.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3