Affiliation:
1. Department of Psychology, Tel Aviv University
2. School of Mathematical Sciences, Tel Aviv University
3. School of Computer Sciences and Sackler School of Medicine, Tel Aviv
University
Abstract
Reinforcement learning is a fundamental process by which organisms learn to achieve goals from their interactions with the environment. Using evolutionary computation techniques we evolve (near-)optimal neuronal learning rules in a simple neural network model of reinforcement learning in bumblebees foraging for nectar. The resulting neural networks exhibit efficient reinforcement learning, allowing the bees to respond rapidly to changes in reward contingencies. The evolved synaptic plasticity dynamics give rise to varying exploration/exploitation levels and to the well-documented choice strategies of risk aversion and probability matching. Additionally, risk aversion is shown to emerge even when bees are evolved in a completely risk-less environment. In contrast to existing theories in economics and game theory, risk-averse behavior is shown to be a direct consequence of (near-)optimal reinforcement learning, without requiring additional assumptions such as the existence of a nonlinear subjective utility function for rewards. Our results are corroborated by a rigorous mathematical analysis, and their robustness in real-world situations is supported by experiments in a mobile robot. Thus we provide a biologically founded, parsimonious, and novel explanation for risk aversion and probability matching.
Subject
Behavioral Neuroscience,Experimental and Cognitive Psychology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献