Affiliation:
1. Department of Cognitive Sciences, University of California, Irvine, CA 92697
2. Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697
Abstract
Patch foraging presents a sequential decision-making problem widely studied across organisms—stay with a current option or leave it in search of a better alternative? Behavioral ecology has identified an optimal strategy for these decisions, but, across species, foragers systematically deviate from it, staying too long with an option or “overharvesting” relative to this optimum. Despite the ubiquity of this behavior, the mechanism underlying it remains unclear and an object of extensive investigation. Here, we address this gap by approaching foraging as both a decision-making and learning problem. Specifically, we propose a model in which foragers 1) rationally infer the structure of their environment and 2) use their uncertainty over the inferred structure representation to adaptively discount future rewards. We find that overharvesting can emerge from this rational statistical inference and uncertainty adaptation process. In a patch-leaving task, we show that human participants adapt their foraging to the richness and dynamics of the environment in ways consistent with our model. These findings suggest that definitions of optimal foraging could be extended by considering how foragers reduce and adapt to uncertainty over representations of their environment.
Funder
HHS | NIH | National Institute of Mental Health
Brain and Behavior Research Foundation
DOD | National Defense Science and Engineering Graduate
Publisher
Proceedings of the National Academy of Sciences
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献