HIV Type-1 Entry Inhibitors with a New Mode of Action

Author:

Fink Ryan C12,Roschek Bill2,Alberte Randall S2

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Miami Leonard Miller School of Medicine, Miami, FL, USA

2. HerbalScience Group LLC, Naples, FL, USA

Abstract

Background: The development of antiviral drugs has provided crucial new means to mitigate or relieve the debilitating effects of many viral pathogens. Regular use of these drugs has led to generation of resistant strains, making the control of many viral infections very difficult, particularly in HIV-seropositive and AIDS patients. A rich source for the discovery of new HIV infection inhibitors has been, and continues to be, the ‘mining’ of the large diversity of compounds already available in nature, and specifically those from botanical extracts. Methods: Using a newly developed direct binding assay with mass spectrometry technology (direct analysis in real-time time-of-flight mass spectrometry), we were able to show that compounds present in extracts of elderberry, cinnamon and green tea bind to and block HIV type-1 (HIV-1) infection in target cells. Results: The compounds that blocked HIV-1 infection were flavonoids and A-type proanthocyanidins. The 50% inhibitory concentration values of these extracts ranged from 0.5 to 201 µg/ml for four different HIV-1 serotypes. Interaction matrices with the elderberry extract and enfuvirtide, a peptide HIV-1 fusion inhibitor, revealed significant super additive effects. This indicates that the compounds in elderberry that prevent HIV-1 infection are likely to bind to viral glycoproteins other than gp41 (the binding site for enfuvirtide). Conclusions: Optimized elderberry, green tea and cinnamon extracts rich in certain flavonoid compounds were shown to block HIV-1 entry and infection in GHOST cells. As such, these types of botanical extracts could provide a starting point for the development of possible safe and reliable cotherapies for HIV-1-positive individuals, as well as for the identification of new small molecules as leading drug candidates for HIV-1 therapeutics and microbicides.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3