Augmented Reality in Science Laboratories: Investigating High School Students’ Navigation Patterns and Their Effects on Learning Performance

Author:

Jiang Shiyan1ORCID,Tatar Cansu1ORCID,Huang Xudong2,Sung Shannon H.2,Xie Charles2

Affiliation:

1. Department of Teacher Education and Learning Sciences, North Carolina State University, Raleigh, United States

2. Institute for Future Intelligence, Natick, Massachusetts, United States

Abstract

Augmented reality (AR) has the potential to fundamentally transform science education by making learning of abstract science ideas tangible and engaging. However, little is known about how students interacted with AR technologies and how these interactions may affect learning performance in science laboratories. This study examined high school students’ navigation patterns and science learning with a mobile AR technology, developed by the research team, in laboratory settings. The AR technology allows students to conduct hands-on laboratory experiments and interactively explore various science phenomena covering biology, chemistry, and physics concepts. In this study, seventy ninth-grade students carried out science laboratory experiments in pairs to learn thermodynamics. Our cluster analysis identified two groups of students, which differed significantly in navigation length and breadth. The two groups demonstrated unique navigation patterns that revealed students’ various ways of observing, describing, exploring, and evaluating science phenomena. These navigation patterns were associated with learning performance as measured by scores on lab reports. The results suggested the need for providing access to multiple representations and different types of interactions with these representations to support effective science learning as well as designing representations and connections between representations to cultivate scientific reasoning skills and nuanced understanding of scientific processes.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Computer Science Applications,Education

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3