Failure analysis and fatigue life prediction of high-speed rail clips based on DIC technique

Author:

Liu Yan12,Jiang Xiujie1ORCID,Li Qiutong12ORCID,Liu Huan3

Affiliation:

1. Shanghai Research Institute of Materials, Shanghai, China

2. Shanghai Engineering Research Center of Earthquake Energy Dissipation, Shanghai, China

3. Shanghai Polytechnic University, Shanghai, China

Abstract

With the development of rail transportation, the fatigue failure of rail clips has become an issue, which affects the operational safety of trains. In this study, reasons for the fatigue failure of rail clips were investigated to improve their service life. A digital image correlation (DIC) technique was conducted to obtain strain fields, vibration modes, and natural frequencies of a rail clip. The strain and displacement of a rail clip under dynamic cyclic loading were also obtained. A fastener system refinement model was developed to analyze the static, dynamic, and modal responses of the clip. The experimental tests and modal simulation results were mutually verified. The fatigue life was analyzed based on the verified FE model. The results revealed that the maximum strain and minimum fatigue life occur at the heel of the clip, in good agreement with the actual fracture position. As the amplitude and frequency of dynamic cyclic load increased, the fatigue life of the clip decreased sharply. Moreover, the normal wheel–rail force accompanied by high-frequency rail corrugations accelerated crack initiation and reduced the fatigue life. The findings of this study provide guidance for improving the service life of rail clips.

Funder

The National Natural Science Foundation of China under Grant

Shanghai Rising-Star Program

Shanghai Pujiang Program

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3