Fatigue Life Prediction and Verification of Railway Fastener Clip Based on Critical Plane Method

Author:

Xie Meng12ORCID,Wei Kai12ORCID,Liu Yanbin12ORCID,Li Jiansen12ORCID,Zhao Zeming3ORCID,Wang Ping12ORCID

Affiliation:

1. MOE Key Laboratory of High-speed Railway Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China

2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China

3. China MCC5 Group Corp. Ltd, Chengdu 610063, P. R. China

Abstract

Accurately predicting the fatigue life of fastener clips is crucial for improving material processing technology, enhancing the anti-fatigue design level, and guiding the maintenance and repair of track structures. Conventional methods that solely evaluate the fatigue life of fastener clips based on the uniaxial stress index under displacement loads may lead to significant errors. In this paper, the stress field of a type-III clip under displacement loading conditions was numerically simulated based on fatigue test standards, and the fatigue life of the clip was analyzed using the Fatemi–Socie (FS) multiaxial fatigue criterion based on the critical plane method. A comparison with standard fatigue test results revealed that, under non-resonance conditions, the predicted position of the fatigue critical plane of the fastener clip coincided with the fracture surface observed at the middle of the measured small arc, with a life prediction error of 7.3%. To further investigate the predictive capability of the FS multiaxial fatigue criterion for the fatigue life of the fastener clip under resonance conditions, the stress levels of the clip under non-resonance and resonance conditions were compared through on-site testing, and the effects of inertial loads caused by vertical and lateral vibration acceleration on the stress field of the clip were analyzed in numerical simulation according to the results of clip acceleration tests; the fastener clip’s resonance fracture position and fatigue life were also predicted based on the aforementioned multiaxial fatigue criterion. To verify the accuracy of the predicted results, a testing method was proposed that equates the high-frequency resonant inertial load of the fastener clip to a low-frequency additional preload under the premise of consistent stress fields. A comparison with the numerical simulation results shows that considering only vertical inertial loads would result in a discrepancy between the measured fracture location and the actual one. Considering both vertical and lateral inertial loads, the fracture location (at the heel of the small arc) under resonance conditions could be accurately determined, with a life prediction error of 13.8%. Compared to the non-resonant displacement loading condition, the inertial loads caused by acceleration under resonance conditions led to a reduction in fatigue life of approximately 77.8%.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3