Design and test of hydro-pneumatic ISD suspension in heavy multi-axle vehicles

Author:

Nie Jiamei1ORCID,Wang Fengli1ORCID,Zhang Xiaoliang2ORCID,Yang Yongjie1

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China

2. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China

Abstract

Aiming to improve the road friendliness so as to reduce the road damage caused by heavy multi-axle vehicles, and to enhance the ride comfort, we propose a kind of hydro-pneumatic ISD suspension structure, which is equivalent to a two-stage ISD structure integrating a traditional hydro-pneumatic suspension and a fluid inerter. Firstly, based on the 1/4 model, a genetic algorithm is used to optimize the key structural parameters of hydro-pneumatic ISD suspension. Secondly, the AMESim dynamic model of heavy multi-axle vehicles is built for the performance comparison between the traditional hydraulic and hydro-pneumatic ISD suspensions. Finally, this paper machines a hydro-pneumatic ISD suspension to replace the traditional hydraulic one in a heavy multi-axle vehicle to carry out a road test. Test results indicate that the proposed suspension can effectively restrain the vibrations of sprung and unsprung mass and improve ride comfort as well as road friendliness. The hydro-pneumatic ISD suspension can be applied to engineering.

Funder

national natural science foundation of china

jiansu Government Scholarship for Overseas Studies

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3