Development of energy control system for parallel hybrid power system using dynamic equations and fuzzy theory

Author:

Chen Po-Tuan1,Yang Cheng-Jung2ORCID,Huang K David1

Affiliation:

1. Department of Vehicle Engineering, National Taipei University of Technology, Taipei

2. Program in Interdisciplinary Studies, National Sun Yat-sen University, Kaohsiung

Abstract

A fuzzy control strategy is developed in this study to manage the parallel hybrid power system of internal combustion engine (ICE) and electric motor (EM) for hybrid vehicles. The rules established for the fuzzy logic are based on the conditions of vehicle pedal position, vehicle velocity, and the state of charge to control the throttle position of the ICE and the switch position of EM in low-, mid-, and high-power cruising. The optimization of the control strategy can make vehicles achieving ECE 40 driving pattern. In addition, the ICE can work in an optimal operation range, thus reducing carbon emission. The EM may provide power according to the demand, such that the torque output of the output shaft of the power split device is twice of the input of the two power sources separately.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3