Development of Transmission Systems for Parallel Hybrid Electric Vehicles

Author:

Chen Po-TuanORCID,Pai Ping-Hao,Yang Cheng-Jung,Huang K. David

Abstract

This study investigated the matching designs between a power integration mechanism (PIM) and transmission system for single-motor parallel hybrid electric vehicles. The optimal matching design may lead to optimal efficiency and performance in parallel hybrid vehicles. The Simulink/Simscape environment is used to model the powertrain system of parallel hybrid electric vehicles, which the characteristics of the PIM, location of the gearbox at the driveline, and design of the gear ratio of a gearbox influenced. The matching design principles for torque-coupled–type PIM (TC-PIM) parameters and the location of the gearbox are based on the speed range of the electric motor and the internal combustion engine. The parameters of the TC-PIM (i.e., k 1 and k 2 ) are based on the k ratio theory. Numerical simulations of an extra-urban driving cycle and acceleration tests reveal that a higher k r a t i o has greater improved power-assist ability under a pre-transmission architecture. For example, a k r a t i o of 1.6 can improve the power-assist ability by 8.5% when compared with a k r a t i o of 1. By using an appropriate gear ratio and k r a t i o , the top speed of a hybrid electric vehicle is enhanced by 9.3%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3