Improvement and determination of the influencing factors of coiled tubing fatigue life prediction

Author:

Zhou Zhao-ming1,Tan Jin-song1,Wan Fu2,Peng Bo3

Affiliation:

1. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, China

2. CNPC CCDC Safety, Environment, Quality, Supervision & Testing Research Institute, Guanghan, China

3. Sinopec Zhongyuan Petroleum Engineering Co., Ltd. Technology Development Office, Puyang, China

Abstract

The fatigue life prediction model cannot accurately predict the service life of coiled tubing operations, resulting in waste and accidental fracture of coiled tubing. This article introduces the fatigue life prediction model of coiled tubing and a detection system developed using weak magnetic detection method and eddy current detection method. The detection device is used to detect accurate defect dimension, wall thickness reduction, and diameter deformation to improve the accuracy of fatigue life prediction. Furthermore, the actual defect dimension is included in the fatigue life assessment calculation to eliminate the influence of the existing model on the immobilization of defects and corrosion influence factors. By analyzing field operation cases and measured values, the effects of defects, wall thickness reduction, and diameter growth on fatigue life are studied to improve the accuracy of parameters and the integrity of basic data in the calculation process. The influence of reverse bending and weld on fatigue life is discussed. The residual life can be predicted more accurately by combining field testing technology and fatigue life evaluation method. Field measurement input of fatigue life prediction model is the main means to improve its accuracy and practicability.

Funder

National Natural Science Foundation of China

southwest petroleum university

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3