Corrosion resistance of steel for coiled tubing units

Author:

Syrotyuk Andriy,Vytyaz Oleg,Leshchak Rostyslav,Ziaja Jan

Abstract

The gravimetric method was used to determine the corrosion rate of a pipe for coiled tubing. Scanning electron and optical microscopy were used to study the microstructure and to determine the nature of corrosion damages. It has been found that corrosion processes of different nature occurred in the studied systems “metal – environment”, in particular, in acid solutions, corrosion was caused by the of hydrochloric acid and the ambient temperature of 70°С. In solution with a smaller acid content, along with the general corrosion, there is a significant localization of the corrosion process (deep corrosion damage is formed: macro pitting and corrosion ulcers). The general corrosion was observed in the HCl solution (13 mass %), which destroys the pipe walls after 576 h of exposure. The neutral solutions caused the general corrosion of smaller intensity in comparison with the acidic environments, even taking into account the temperature factor. The surface-active substances or petroleum products that are present in the solutions, form barrier films on the steel surface, which prevent the access of corrosive components from the environment to the surface of the material, especially during the short exposure time. With the increase of the exposure at the elevated temperatures, the barrier films break down and the steel surface undergoes the general corrosion.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Root cause analysis of the corrosion-related coiled tubing failure;Journal of Electrochemical Science and Engineering;2022-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3