Dynamic tracking performance of servo mechanisms based on compound controller

Author:

Wen Nuan1,Liu Zhenghua1,Zhang Fang2,Ren Yan3

Affiliation:

1. School of Automation Science and Electrical Engineering, Beihang University, Beijing, China

2. School of Economics and Management, Beihang University, Beijing, China

3. School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China

Abstract

This article provides systematic analysis and controller design methods for dynamic tracking performance of servo mechanisms associated with practical systems. Discrete general composite nonlinear feedback, as a fundamental controller, will be proposed to yield a good transient performance. Particularly, in the servo systems, there also exist unmodeled disturbances which may lead to tracking errors. A novel repetitive control scheme based on disturbance observer configuration is incorporated into the controller to counteract this unexpected effect. Furthermore, to deal with any periodic signal of variable frequency, a fractional-order repetitive control scheme based on disturbance observer strategy is proposed. The stability of the overall closed-loop system is guaranteed via frequency domain analysis. Three controllers, that is, the proportional–derivative controller with zero-phase error tracking controller scheme and the conventional disturbance observer, the integral backstepping controller, and the compound discrete general composite nonlinear feedback controller with fractional-order repetitive control scheme based on disturbance observer are compared. To demonstrate the dynamic tracking performance of the proposed control strategy, comparative experiments are conducted.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the Chinese provincial air transportation network;Physica A: Statistical Mechanics and its Applications;2017-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3